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Abstract

A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is

presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a

quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic

wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to

implement and extremely reliable, being relatively insensitive to design space noise.

Background

Numerical methods for optimizing aerodynamic performance have been studied for many years. Most

approaches can be classified into one of three general categories: 1) inverse methods, 2) gradient-based

methods and 3) genetic algorithms. The inverse method in aerodynamic design seeks to determine the

aerodynamic shape for a specified surface pressure distribution, i.e., the "inverse" of the normal analysis

approach. An advantage of this approach is that it offers direct control over aerodynamic forces and

moments (through specification of the surface pressure). In addition, by utilizing proper constraints on the

adverse pressure gradient, a degree of control on boundary layer separation is also available, even for

inviscid implementations. The biggest difficulty of the inverse design method is selecting a pressure

distribution that will achieve the best aerodynamic performance for a given set of constraints. Clearly,
experience helps in this area, but knowing what is good aerodynamically and (at the same time) does not

over constrain the inverse method and prevent convergence can be a problem.

Numerical optimization using gradient-based methods has received much attention in recent years. The

reliability and success of gradient methods is based on and requires & smooth design space and the

existence of only a single global extremum. A good review of gradient methods used in aerodynamic

design is presented by Reuther. 1 The general idea associated with this broad class of methods consists

of the following steps. First, determine the optimization's objective, e.g., minimization of the drag-to-lift

ratio or minimization of the least-square error between the actual and a prescribed pressure distribution,

etc. Second, the geometry to be optimized must be parameterized. This parameterization must

completely describe the geometry (or the portion that is to be optimized) and must lend itself to discrete

variations that can be independently modified. In many (but not all) gradient method implementations it is
advantageous to parameterize the geometry with the minimum number of parameters that will still

completely describe the applicable design space. Examples of aerodynamic shape parameterizations

are given in Hicks and Henne 2 where a series of "bump" functions is used or Burgreen and Baysal 3 where

a series of B-spline control points is used. The third step is to compute the direction in the design space

(away from a specified initial condition) that minimizes the objective using a steepest descent, conjugate

gradient, Newton or quasi-Newton approach (see Luenberger 4 or Reuther _ for general details in this

area).

The technique for determining sensitivity derivatives is a key item in any gradient-based design approach

and has received much attention. The simplest approach, often called the "brute-force" or finite-

difference method, consists of using CFD flow solver solutions to determine the effect of each design

perturbation on the objective function. Sensitivities are then constructed using finite-difference

formulas. If a design problem using the above approach has K decision variables, the sensitivity



derivative computation for each design iteration will require K+I function evaluations, specifically, one
CFD solution for the unperturbed or baseline geometry and Ksolutions corresponding to the K decision
variable perturbations. After the sensitivity derivatives have been computed and the steepest descent
direction is determined, a "line search" is required to determine values for the step size vector, which in
turn requires a number of additional CFD function calls. Overall, gradient-based methods for typical
aerodynamic optimization problems require from several iterations to several tens of iterations to
converge (depending on the method used and the number of decision variables). Thus, the total
number of CFD solutions required for this type of optimization approach can easily number in the
hundreds for a single design.

Other methods for evaluating sensitivity derivatives that seek to reduce the large computational cost
associated with the finite-difference method have been developed, e.g., the ADIFOR (Automatic
Differentiation of Fortran) approach, 5the quasi-analytic method of El-hanna and Carlson 6,7and Arslan and
Carlson eand the adjoJnt method of Jameson. 91° In the latter approach, an adjoint equation, derived from
control theory, is solved to determine design space sensitivity derivatives. This approach is superior to
the finite-difference approach for generating sensitivities because all the sensitivities are obtained (no
matter how many there are) by solving one adjoint equation, with a cost on the order of. one flow field
solution. Thus, for design problems containing a large number of decision variables, the cost savings for
this approach over the finite-difference approach is significant.

The last optimization method discussed is called the genetic algorithm (GA) approach and is the method
used in the present paper. The basic idea associated with this approach is to search for optimal solutions
using the theory of evolution. During solution iteration (or "evolution" using GA terminology) the decision
variables or "genes" are manipulated using various operators (selection, combination, crossover,
mutation) to create new design populations, i.e., new sets of decision variables. General GA details can
be found in Goldberg, 11DavisTM and Beasley, et al.13Each design is evaluated using an objective-like
"biological fitness function" to determine survivability. Constraints can easily be included in this
approach, ff a design violates a constraint, its fitness function is set to zero, i.e., /t doesn't survive to the
next evolution level. Because GA optimization is not a gradient-based optimization technique, it does
not need sensitivity derivatives. It theoreticaJJy works well in non-smooth design spaces containing
several or perhaps many local extrema. It is also an attractive method for multi-point design applications. A
disadvantage of the GA approach is expense. In general, the number of function evaluations required
for a GA algorithm exceeds the number required by a finite-difference-based gradient optimization (see
the results presented in Obayashi and Tsukahara TM and Bock_S). Examp'le applications utilizing potential-
based flow solvers in the context of GA optimization can be found in Quagliarella and Della Cioppa 16for
airfoil applications, Vicini and Quagliarella 17for multi-point and multi-objective airfoil applications and
Obayashi et al._8for multi-disciplinary optimization of transonic wings. Examples of multi-design-point
wing optimization using Euler and Naver/Stokes flow solvers can be found in Sasaki, et al?9 and
Oyama. 2°,21

GA Algorithm

The GA used in the present study to perform all optimizations is described in this section. As mentioned
above the general idea behind any GA optimization is to discretely describe the optimization space using a
number of genes, x,.n. In this notation the/-subscript is the gene number and the superscript corresponds

to the generation. Each set of genes that leads to the complete specification of an individual (or an
individual design) is called a chromosome, which is given by

n n n ",xn),'",X_IG,I)Xj (x_,j, xz.j,.. (1)

In this notation X_ is the ./th chromosome for the nth generation that consists of NG genes. A second

subscript j has been added to each gene to show which chromosome it is identified with.
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For aerodynamic shape optimization the set of genes associated with a single chromosome must fully

describe the geometry being modified. In many GA applications genes are computationally represented

using bit strings and the operators used are designed to manipulate bit string data. In the present

approach, following the arguments of Oyama, 21 Houck, et al. _ andMichalewicz, 23 real-number encoding is

used to represent all genes. The key reason for using real number encoding _ that they have been
shown to be more efficient in terms of CPU time relative to binary encoded GAs. 23 In addition, real numbers

are used for all parameters defining an aerodynamic surface or shape, e.g., sweep, twist, thickness,

camber. Thus, using a real number encoding eliminates the need for binary-real number conversions.

Once the design space has been defined in terms of a set of real-number genes, the next step is to form

an initial generation, Go , which is represented by

Go o 0 o ..,XOc)= (Xl,X2,." ,xj,- (2)

where NC is the total number of chromosomes. Each gene within each chromosome is assigned an initial

numerical value using a process that randomly chooses numbers between fixed user-specified limits. For

example, the tenth gene in an arbitrary chromosome is computed using

xl0 = R(0,1)(x maxlo- xminlo) + xminlo

where xmaxlo and xminlo are the upper and lower limits for the tenth gene, respectively, and R(0,1) is a

uniform random number generator that delivers an arbitrary numerical value between 0.0 and 1.0.

After the initial generation is established, fitness values, F °, are computed for each chromosome using a

suitable function evaluation. This is analogous to the objective function evaluation in gradient methods

and symbolically is represented using

F ° = F(X °) (3)

In the case of aerodynamic shape optimization the function F represents a suitable CFD flow solver

analysis. Fitness determination is followed by a ranking process where the most fit individual is given a

number one ranking, the second most fit individual is ranked number two, and so on. This is simply

determined for the initial GA generation using

,c;, /if(Fj° <Fj°)ic=ic+l jj=I, NC

IR ° = ic

j = 1,NC

This completes the GA initialization process. The next several subsections describe how the GA

progresses from generation to generation using a variety of special operators that manipulate the
chromosomes and allow evolution to occur.

Selection

The first operation required to determine the (n+/)st generation is selection. The chromosomes that will

be used by the other GA operators (to be discussed shortly) must be selected from the nth generation

chromosomes. Simply stated, the selection operation used in the present study is given by



/)--1

it (IR;_<jj)thenI
=x;' lJ

jj= jj + l I
endif J

if (jj > NC) stop

= 1,NC
it = 1,NC

Once all the genes in each chromosome have been selected they are placed in a temporary holding array

given by

G" : (X;,X2,.--,X;,. : .,XNc)

Note how the fittest individuals in the nth generation are selected multiple times, the average individuals

are selected a small number of times, and the least fit individuals are not selected at all. This biasing toward

the fittest individuals is a key element in any GA. The chromosomes represented by the G" quantities will

be used by the succeeding operators to produce the final value forG n+l.

Passthrough

The simplest operator used in the present study is "passthrough." As the name implies, a certain number

of the fittest chromosomes are simply "passed through" to the next generation. Because passthrough is

always performed first, it operates on the chromosomes that have the highest fitness. This guarantees

that the maximum fitness never drops from generation to generation. The number of chromosomes that

are passed through to the next generation is controlled by the parameter ,o8. For example, if ,o8 = 0.1 then

ten percent of the chromosomes--those with the highest rankings--will be passed through to the next

generation.

Random Average Crossover

The next GA operator to be discussed is called the random average crossover operator and is

implemented gene by gene using the following formula:

xn+l 1 • •
i.j = _(xi.jl + xi.j2) i = 1,2,-..,NG (4)

where the jl and j2 subscripts are randomly chosen between 1 and NC. Values for X_,il and x_j 2 are taken

from G" and the newly computed values x n_l,a are then stored in G n+_. Once all the genes in a particular

chromosome have been operated on the algorithm turns to the next chromosome. The number of

chromosomes modified using random average crossover is determined by the parameter PA. For

example, if PA = 0.2, then twenty percent of the chromosomes will be determined for the (n+l)st

generation using random average crossover.

Perturbation Mutation

The next GA operator is called perturbation mutation and is implemented by first selecting a random

chromosome X i from G'. Then a single gene x;.j is randomly selected from X i and modified using the

following formula:

xn,l = x_.j + (x max,- xmini)[R(0,1 ) - 0.5]/$ (5)
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where _ is a user-specified tolerance. Because this operator can cause the value of a particular gene to

exceed one of its limits, additional checks to make sure this doesn't happen are required each time Eq. (5)
is implemented. The number of chromosomes modified using perturbation mutation is determined by the
parameter pp. For example, if pp = 0.3, then thirty percent of the chromosomes will be determined for the
(n+l)st generation using the perturbation mutation operator.

Mutation

The last GA operator used in the present study is called the mutation operator and is implemented

similarly to the perturbation mutation operator. First, a random chromosome X;. is chosen from G'. Then a

single gene xi. i is randomly selected from XI and supplied with a completely different value using the

following formula:

x _'1 = (x max i- x min i)R(0,1) + x mini
I,J

(6)

Like the other operators used in the present study the mutation operator is controlled by.a parameter, PM.
For example, if PM = 0.4, then forty per cent of the chromosomes will be determined for the (n+l)st
generation using the mutation operator.

General Algorithm Comments

For consistency the parameters (,o8,PA ,Pp ,PM) must sum to one. The passthrough operator is always
performed first and always passes through the top Ps chromosomes from G° to G n+l. Otherwise the order
in which each operation is performed is immaterial. Once all values of Gn+l have been established, the
algorithm proceeds to fitness evaluations using Eq. (3), ranking and on to succeeding generations until
the optimization is sufficiently converged. The next section presents results where the algorithm just
described is exercised.

Results

Case l(Two-Gene Hill-Climbing Problem)

The first problem used to evaluate the GA just presented is a simple hill-climbing problem. It utilizes a
continuously differentiable analytic function of the form z = f(x,y) that has several peaks and valleys. An

isometric graphical view of this fu_lction is displayed in Fig. 1 over the range -3 < x'< 3 and -3 _<y < 3. The
object of this exercise is to find the maximum value of z using the GA and in so doing gain insight into the
workings of the GA process. Thus, the x and y values are the genes, each (x,y) pair is a chromosome and
the value of z for each chromosome is the fitness.
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Fig. 1 Isometric view of the function used in the hill climbing problem.

Two typical GA convergence histories for the hill-climbing problem are presented in Fig. 2. For each curve
the number of chromosomes, NC, was 20 and the 18parameter in the perturbation mutation operator was
0.01. For each of these computations the GA procedure was continued until the error in the solution was
reduced below 0.00001, i.e., CONV = 10_, The P vector notation appearing in the Fig. 2 caption is
defined by P=(Ps, PA, Pp, PM)"The fitness value at the end of each GA generation is plotted. As can be
seen there is not that much difference between the two convergence histories, although the case with
more mutation (higher values of pp and PM)and less passthrough (smaller value of PB) does have a slightly
superior convergence.
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Fig. 2. Sample GA convergence history for the hill-climbing problem, 13= 0.01, CONV = 105, NC = 20.

Using the hill-climbing problem to study the effect of P, NC and 13on GA convergence is handy because of
the speed with which each complete GA optimization can be performed. Such a study is presented in
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Figs. 3 and 4. For these results avalue of CONV=10 s was used for each computation. Each curve was

generated by performing a separate GA over a large number of NC values ranging from 12 to 1024 in

increments of 4. The resulting data were curve fit to produce each of the curves displayed.

Figure 3 presents the effect of wide variations in NC and 13on GA convergence. Generally, the most

optimal convergence occurs when the number of chromosomes is small, on the order of 12-20, and when

13is between 1.0 and 0.001. Except for extremely small values (104 and smaller) 13has little effect on GA

performance. This is understandable since the perturbation mutation operator serves the role of providing

small arbitrary corrections to the convergence process. As l] is reduced in size the corrections become too

small and GA convergence is delayed.

For moderate values of 13the effect of the number of chromosomes is each generation has a relatively

significant effect on convergence. This is due to the fact that a reasonable number of generations must be

selected and operated upon in order to achieve convergence. As the number of chromosomes per

generation is reduced, the number of generations that are enabled, for a fixed number of function

evaluations, increases. This is the mechanism that produces faster convergence for smaller values of NC.

Figure 4 shows the effect of several different P vector values on GA performance as a function of

chromosome size. As can be seen the different values of P generally have little influence on

convergence. The only minor conclusion from Fig. 4 is that the curve generated when Ps = 0.4 is slightly

poorer for smaller values of NC. Thus, it is concluded that the use of the passthrough operator in the
present GA implementation should be limited.

Fig. 3.
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Fig. 4.
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Case 2 (Multiple-Gene Nozzle Problem)

An inverse design case is presented for the quasi-one-dimensional inviscid Euler equations. A one

dimensional Newton solver (ARC1 D) employing a central differencing / artificial dissipation scheme is used

as the flow solver, i.e., function evaluation. The details of the flow solver and method are not pertinent to

this study. The method converges typically in 10-20 nonlinear iterations for flows ranging from

subsonic/transonic to supersonic nozzle shapes. The design parameterization is a set of knots,

representing the height of the nozzle at various axial locations, which are used_in a spline fit of the

geometry. The case presented here used seven knots to define the 21grid point nozzle shown in Figure

5. The target nozzle shape is shown along with a sample of initial shapes created from a random set of

initial genes. The vertical position of the knots is the gene encoding and each gene is bounded between

0.8 and 2.0 which includes the final design target. Given the exact diverging nozzle shown in Fig. 5, a

target density (target p) is computed using ARC1D and is used to define the fitness for the GA. In

particular, the fitness is defined as the inverse of the L2 norm of (target p- p), wher6. -p is computed from

ARC1D using the best chromosome from the GA. Figure 5 also shows computed ÷p for the initial nozzle

shapes with the corresponding initial _;tness for each shape.
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Fig. 5 Initial Chromosomes and Fitness for One- Dimensional Nozzle D.esign

The GA was run with P = (0._], 0.2, 0.4, 0.3), ,6 = 0.5 and a population of 20 chromosomes. Figure 6

shows a sample of various nozzle shapes and computed densities at different points in the GA

convergence history. Figur(_ 5a corresponds to an early time solution after three generations with a low
fitness value and a poor design. Figures 6b and 6c show later time designs where the GA has produced

by generation 100 a good fitness and design. Finally in Figure 6d, after 200 generations the nozzle

design is fully converged and the design process has reproduced the target nozzle shape. Note that the

last 100 generations would normally not be necessary in a real design process, as the iteration would
probably be terminated earlier when the fitness based on the difference between the target and

computed density reaches some prescribed tolerance.
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Fig. 6 Various Designs and Fitness for One- Dimensional Nozzle

Figure 7a shows the GA fitness verses generation, and Figure 7b shows the GA fitness as a function of
function evaluations, (i.e. calls to ARC1D). In addition, Fig. 7 shows the averagefitness convergence

histories, which is quite noisy because of mutation, but still indicates convergence of the GA process.
These results are typical of GA convergence for an inverse design case, (e.g. Tse and Chan 24 show

inverse airfoil designs requiring 10,000 or more function evaluations), requiring on the order of 2000 to

4000 function evaluations to reach a design criteria. High fitness is achieved on the order of 2000 function

evaluations, but the nozzle design requires a lot more evaluations to settle on the final shape. This can be

improved but a modification of the fitness measure or the inclusion of a more constrained optimization. In

this study we did not employ any smoothness criteria or other constraints, which would eliminated the

more volatile designs achieved by the high values of p, and Pro.
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Case 3 (Multiple-Gene Wing Optimization)

The last case presented c4emonstrating the use the _ optimization involves a three-dimensional
transonic wing. The baselin_ geometry used for this set of computations is the RAE Wing A2s mounted on

a symmetry plane. This geometry involves a symmetric wing with a 9% maximum thickness-to-chord ratio, a

taper ratio of 0.333, a leading edge sweep of 36.65 ° and an aspect ratio of 6.0. The freestream flow

conditions used for this set of computations were held fixed at M_ = 0.84, c_= 4 Q,

The TOPS 26,2zCFD code is utilized for this case to perform all function evaluations. This code is a three-

dimensional full potential solver that utilizes a chimera zonal grid approach for handling complex

geometries. It has the capability of producing complete numerical solutions about wing configurations
(-115K grid points) in 1-2 min on a single SGI Origin 2000 processor. Each run consists of surface and

volume grid generation; chimera hole cutting, donor cell search, and interpolation coefficient
computation; and, finally, the flow solver step. Each of these steps is automatically coupled and executed

without user intervention. This makes the GA/TOPS coupling easy and efficient.

Each grid used consists of two grid zones, an inner C-H topology grid fitted to the wing surface and an

outer sheared-stretched Cartesian grid. The inner grid is generated using the HYPGEN grid generation

program. 28During GA iteration another option for generating the inner grid is available that first reads in a
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baseline-HYPGEN grid and then modifies it according to the wing geometry perturbations that have just
been computed via the GA process. This saves a small amount of computer time in that the grid does not
have to be recomputed from scratch at the beginning of each function evaluation.

For all computations used during GA iteration a coarse grid consisting of 115K points is used. This
provides adequate accuracy for the optimization to proceed while allowing efficient code operation. Once
the design optimization is complete, flow solutions for the initial and final geometries are recomputed
using a finer grid (494K points), thus allowing a more accurate assessment of the performance
improvement actually achieved.

The design space discretization for this wing optimization problem consists of ten genes. Eight of the
genes are associated with the wing upper surface thickness--four thickness variables at two span stations
each, wing root and tip. These thickness values are implemented using bump functions 2 located at x/c =
0.15, 0.35, 0.45, 0.65. The value of wing twist at the root and tip are the two remaining genes. The
maximum and minimum gene values used for all thickness functions are +0.01, respectively. The wing
root twist maximum and minimum values are 3g and 0g, respectively and the wing tip twist values are, 0g
and -3 g, respectively. The simple definition of the design space described above is chosen because the
emphasis in this study is on GA optimization--it's implementation strategy and efficiency--not on
aerodynamic efficiency. All computations in this section have been performed on an SGI workstation with
a single R10000 (250MHz) processor using Fortran 77.

The fitness function for all wing optimizations reported in this section is given by

F_

1.0

Co + 0.025

CL
+ (CL - 0.451) 2

In this equation CL and Co are the wing inviscid lift and drag coefficients, respectively. The 0.025 constant
is added to the drag coefficient to approximate viscous drag. The 0.451 constant in the denominator's
second term is the coarse-grid baseline solution lift coefficient and provides a simple constraint on the
optimization process keeping the lift nearly fixed.

A typical result obtained using the GA optimization and design space discretization described above is
presented in Figs. 8 and 9. This GA optimization was computed with 2'0 chromosomes and utilized a
value of 0.3 and P values of (0.1, 0.2, 0.3, 0.4). Figure 8 shows pressure coefficient distributions at
several span stations for both the baseline and optimized wing solutions. Figure 9 shows Mach number
contours for the upper wing surface for the same two solutions. Note that the o_tirnization has produced a
solution with significantly reduced shock strength, especially outboard of mid span. In addition, the single
shock characteristic of the baseline solution has been replaced with a lambda shock pattern in the
optimized solution. The inviscid drag for this computation was reduced by 67 counts while the lift
decreased by only 0.0016.
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a) Baseline solution b) Optimized solution

Fig. 9. Mach number contours plotted on the upper wing surface for the baseline and optimized
solutions, M= = 0.84, c( = 4g, NC = 20, 13= 0.3, P = (0.1,0.2, 0.3, 0.4).

The next several results focus on GA convergence performance. Figure 10 shows the effect of flow solver
convergence level on GA convergence. There are three curves plotted in Fig. 10, each showing how the
maximum fitness converges with the number of CFD flow solver function evaluations over 30 generations.
The first curve shows GA convergence when each flow solver solution maximum residual (RMAX) is
reduced below 104. Since the initial maximum residual is on the order of 0.01, this roughly corresponds to
a two order of magnitude reduction in maximum residual for each solution--a level of convergence that
does not achieve plottable accuracy. As can be seen in Fig. 10, the GA process barely improves the
maximum fitness above the baseline level.

The second curve in Fig. 10 shows GA convergence when each flow solver solution maximum residual is
reduced below 10S. This roughly corresponds to a three order of magmtude reduction in maximum
residual and produces plottable accuracy for all but the most difficult areas to converge, e.g., the solution
around the shock may not be completely converged for this level of maximum residual reduction. The third
curve in Fig. 10 shows GA convergence when each flow solver soluti()n maximum residual is reduced
below 106. This roughly corresponds to a four order of magnitude reduction in maximum residual and
produces solid plottable accuracy over the entire solution. Note that for the iast two curves displayed in
Fig. 10, the GA convergence histories are nearly identical. However, the third c_rve--corresponding to
the more tightly converged flow solutions---does produce a peak maximum fitness value that is about 13%
higher. It is interesting to note that the GA optimization performance displayed in Fig. 10 (second and third
curves) is comparable to convergence of the finite-difference GM optimization reported in Ref. 29, which
was used to optimize a similar problem to that of the present section.
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Fig. 10. Genetic algorithm convergence history comparison showing the effect of flow solver

convergence level on GA performance, M_ = 0.84, (z = 4g, NC = 20, I_ = 0.3, P = (0.1, 0.2, 0.3,
0.4), NG = 30.

Another important way to view GA efficiency is to measure convergence against computer time and not

against the number of function evaluations. The results presented in Fig. 10 are replotted and displayed

versus CPU time in Fig. 11. Note that the level of flow solver solution convergence--as expected--has a

profound effect on computation cost. The second curve, while producing only 87% of the maximum

fitness that the third curve produces costs only about one-third as much in terms of computer time.
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Fig. 11. Genetic algorithm convergence history comparisons showing the effect flow solver

convergence level on GA CPU time, M= = 0.84, c_= 49, NC= 20, [3= 0.3, P = (0.1, 0.2, 0.3, 0.4),
NG = 30.

In the hill climbing problem the effect of number of chromosomes on GA convergence was presented in

Figs. 3 and 4. For the present wing optimization problem it's more difficult to present such a complete

study because of the computational expense involved. Nevertheless, a comparison between two results

is possible and is presented in Fig. 12. The two curves correspond to a baseline computation utilizing 20
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chromosomes and a separate computation utilizing 100 chromosomes. Both computations utilized flow
solutions converged to 10-6, [3 = 0.3 and P = (0.1, 0.2, 0.3, 0.4). The 20-chromosome computation
utilized 100 generations and the 100-chromosome computation utilized 20 generations, thus producing
curves with similar numbers of function evaluations. For this ten-gene aerodynamic shape optimization
problem it is clear that the use of 20 chromosomes produces superior GA convergence relative to the
100-chromosome computation.
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Fig. 12. Genetic algorithm convergence history comparison showing the effect of number of
chromosomes on GA performance, M. = 0.84, c_= 4g, RMAX _<108, [3= 0.3, P = (0.1, 0.2, 0.3,
0.4).

For all computations presented in this section a special solution initialization feature has been used in the
CFD flow solver. Instead of using a freestream initial solution, the solution is initialized from a file that
contains the most recent maximum fitness solution. Whenever the GA procedure encounters a new
chromosome having a fitness that exceeds the previous maximum, the flow solution is saved and used to
initialize each succeeding solution until it is replaced with a superior solution. Because changes in many
chromosomes are small--being perturbations away from the several fittest individualsmuse of this
philosophy greatly reduces the amount of computer time required for a GA computation. A quantification
of this improvement is presented in Fig. 13. The first curve shows a GA ccr, verger_ce history that uses the
solution restart option, and the second curve shows an identical GA convergence history that does not
use solution restart. Each flow solution for both curves is converged to RMAX < 108. For this optimization
the use of restart saves a factor of 2.7 in computer time.

The successful use of solution restart and less well-converged solutions during GA iteration is a testament
to the robustness of the GA approach for optimization. Both these shortcuts introduce error into the GA
process, but, if suitably controlled, do not hamper overall GA convergence.
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Fig. 13. Genetic algorithm convergence history comparisons showing the effect solution restarts on GA

CPU time, M. = 0.84, (_ = 4 g, NC= 20, j3 = 0.3, P = (0.1, 0.2, 0.3, 0.4), NG = 30, RMAX < 106.

Conclusions

A genetic algorithm (GA) procedure suitable for performing optimizations, including aerodynamic shape

optimizations is presented. It uses real-number encoding to represent all geometric parameters as genes

in the GA. Four operators are presented enabling advancement from one generation to the next. They

include passthrough, random average crossover, perturbation mutation and mutation. The results indicate

that the GA approach is robust and continues to converge even with significant amounts of lack-of-

convergence error in each function evaluation.
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